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We review various aspects of the cosmology of brane-induced gravity models. After
recalling some properties of these models, we give the equations governing the cosmo-
logical dynamics in &, symmetric case. We then discuss properties of two particular
solutions of interest, a self-accelerating solution that has been proposed to provide
an alternative explanation to the observed late time acceleration of the universe, and
a self-flattening solution. The latter is also discussed in relation with the van Dam-—
Veltman—Zakharov discontinuity.
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1. INTRODUCTION

The brane-induced gravity models initially proposed in Dwdlal. (2000)
and further developed in Dvali and Gabadadze (2001) and Bvali. (2001a,b,
2002), whose cosmology is the subject of this paper, are a particular class of
brane-world models. The latter have recently attracted a lot of attention, and can
be defined as models where our four-dimensional (4D) universe is considered to
be a surface (calledlrane embedded into a higher dimensiobalk space-time.
Brane-world models are inspired by superstring-M theory, and can be regarded as
some low-energy effective models of more fundamental underlying theories, but
are also of interest on their own. This is particularly true with the brane-induced
gravity models, which can provide new phenomenological ideas, but are also a
playground to investigate the van Dam—Veltman—Zakharov discontinuity (vDVZ)
(Van Dam and Veltman, 1970; Zakharov, 1970). After recalling some properties
of those models (this section), we give the equations governing their cosmology
when the bulk is symmetriawnith respect to the brane (Section 2). These equations
were first derived in Deffayet (2001). We then review previous works about two
particular solutions. The first (discussed in Section 3), a self-inflationary solution

1Peyresq Physics VI, Proceedings, 2001.
2Department of Physics, New York University, New York, NY 10003; e-mail: cjd2@physics.nyu.edu.
3See Cordero and Vilenkin (2001) and Dick (2001a,b) for discussions of nonsymmetric solutions.
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found in Deffayet (2001), was proposed in Deffayet (2001) and Deffayat.
(2001a) to be used to reproduce the observed late time acceleration of the universe
(Perimutteret al,, 1999; Riesst al, 2001; Ries®t al, 1998) without the need

for a nonzero cosmological constant. It was further compared to SNla and CMB
data in Deffayetet al. (2002). The last (discussed in Section 4), introduced in
Deffayetet al. (2001c), has the property that 4D Minkowski space-time is a late
time attractor for a large class of initial conditions on the brane. It was further
discussed in Deffayedt al. (2001d) in relation with the vDVZ discontinuity.

1.1. Defining Properties of Brane-Induced Gravity Models

We will only consider here the case of a single brane, thought of as our 4D
universe, embedded in a five-dimensional (5D) bulk. The first properties of brane-
induced gravity models we would like to recall are common with a large class of
brane-worlds. We first define the brane embedding into the bulk by the coordinates
XA(x*) of the brane-world volume (parametrized by coordinatgsinto the 5D
space-time. The bulk metrif;, 5 induces through this embeddidxd(x*) a metric
0.» On the brane (called induced metric) defined by

Quv = QABauXAavXB- (1)

In the above equation, and in the following, we put a tilde on quantities (e.g.,
the 5D metric§ag or the 5D Ricci scalaR) to distinguish them from their 4D
counterparts depending only on the induced metric (g,9.0r R). The action of

the theory contains the usual 5D Einstein—Hilbert action

M3 -
&H=—§{/&Xﬂaa %)

whereMs) denotes the 5D reduced Planck mass. It also contains the a&iaof,
matter field which are assumed to be localized on the brane. One writes accordingly

Sh = d*x \/@Emv (3)

brane

where L, is a matter Lagrangian density. All the terms considered so far are
generically considered in brane-world models.

The gravitational action is taken to contain another te®p, in addition to
the 5D Einstein-Hilbert term (2), given by

MZ
Sn="g! [ d%/lIR @
brane

“41n the following, we use uppercase Latin letté¥sB, . . . to denote 5D indices, Greek letters from
the middle of the alphabet, v, . .. to denote indices parallel to the brane-world volume, the numeral
5 an index transverse to the brane, and Latin lettefs. . . to denote space-like indices parallel to
the brane-world volume.
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This term is the usual 4D Einstein—Hilbert term computed here on the brane and
with the induced metric. In the above equatiblp, is a mass parameter which
one allows, in brane-induced gravity models, to be very large in comparison to
the other dimensionful parameter of the thedvs). A term such ass, would

also arise quite generically in brane-world models. It can be thought of as being
induced by quantum corrections involving the coupling between bulk gravity and
brane matter (Dvalet al, 2000; Dvali and Gabadadze, 2001) in the spirit of
the induced gravity program of Adler (1980a,b, 1982), Capper (1975), and Zee
(1982). This is the allowed large hierarchy betwdégs and M) that makes alll

its phenomenological interestAs will be seen below, this term is able to localize
gravity on the brane for distances smaller than a critical length, even if the bulk
space-time is flat (5D Minkowski), allowing al9dp, to be interpreted as the usual

4D reduced Planck mass. This is in sharp contrast with other types of brane-world
models where the recovery of 4D gravity on the brane is achieved assuming the
bulk space-time to be either compact [like e.g. in Arkani-Hareedl. (1998,
1999) and Antoniadist al. (1998)] or curved in a very specific way (Randall and
Sundrum, 1999a,b). The relaxation of these hypotheses could in turn shed some
light on the cosmological constant problem (Deffageal., 2001a; Witten, 2000
Dvali et al. (2000)), in addition to the various other virtues of the model, some of
which will be discussed below.

Up to a suitable Gibbons—Hawking term, the action of the theory we are
considering here is thus given by the sum of Egs. (2)—(4), and the equation of
motion is given by

Gas = Rag — }RQAB = iTAB- (%)

3
2 M)

In the above equation the effective energy—momentum tefiggrjs given by the

sum of the energy—momentum tendqr, of the brane and a term proportional to

the 4D Einstein tensoG,,, coming from the induced gravity term (4). Namely,
choosing a Gaussian normal coordinate system with respect to the brane, where
the brane sits ay = 0, andXA(x*) = (Slfx“, the only nonvanishing components

of Tag are

Tuw = 8(Y) (T — M3GL) . (6)

1.2. Perturbative Properties
We review here some results obtained in Dealal. (2000) by a perturbative
expansion over a flat (5D Minkowski) background. In this way one can compute the

5This hierarchy can be generated e.g. assuming that the standard model U.V. cutoff is much higher
than the quantum gravity scale (Dvatial, 2002).
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gravitational potential between static point-like sources on the brane. We first drop
the tensorial structure of the graviton propagator and only discuss the dependence
with distance of the potential. This is the same as in a scalar field theory where
the scalar field action would be given by the sum of a bulk term (5D) and a brane
localized (4D) term as in
3 2
@ / d°X a3 D + Mey d*x 9, dI* @ 7

brane

The results of Dvalet al. (2000) read for the potential of a unit mass,

1 1 r r 1 r r
V()=———— - ¢sin| — | Ci| — = — —2Si| —
=g ¢ () 9() 2 i) [ -]
, , (8)
where Cig) = y +1In(2) + [, (cost) — 1)dt/t,Si(z) = [, sin¢) dt/t,y ~ 0.577
is the Euler—Mascheroni constant. The distance sgategiven by

M?,
e = 2|\/|3 .
®)

At short distances when < r, the first leading contributions 14(r) are

1 1= r r
VO gz {5 ()] (7) o). e

so that at short distances, the potential has the 4D Newtoriasdaling. This
is subsequently modified by the logarithmépulsionterm in Eq. (10). The large
distance behavior, on the other hand, is giverrfos rc by

1 1(r 1

Thus, at large distance, the potential scales a$ $imilarly with laws of 5D
theory. The gravitational potential thus exhibits a short distance 4D behavior and
alarge distance 5D behavior in contrast to the standard brane-world picture where
gravity is modified at short distance ofly.

The mode analysis of the gravitational (or scalar) fluctuations leads to a
convenient interpretation of this potential in terms of Kaluza—Klein (KK) modes
(Dvali et al,, 2001b). Namely there is a continuum of 4D massive KK stabgs,
the wave functions of which are suppressed on the brane by

)

1
|Pm(y = 0)* = rmzrg, (12)

81n this particular scenario, one also expects short distance modifications, e.g. when quantum gravity
effects become relevant. This will however happen only at distances of Mg’]-:rwhich can be
chosen to be much smaller than
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so that the gravitational potential on the brane is also given by

[e.¢] —mr
V(r)uMigf %e—, (13)
& Jo A+mrrg v
and gravity is mediated by massive modes although its short distance behavior
mimics a zero-mode mediation.

Before discussing the relevant numerical parameters, let us turn to the ten-
sorial structure of the graviton propagator. Following again Dealal. (2000)
we consider 5D metric fluctuatiorisg over a 5D Minkowski backgrounglas.

Choosing the harmonic gauge in the bulk
~ 1 .
3"hag = > aghg, (14)
and setting (consistently with the equations of motion)
hs = 0, (15)

the surviving components dfag areh,,, andhss. After some further simplifica-
tions, one is led to the equation

M2 M2 A ;
(%aAaA - TMfS(y)aua“) o) = {T’“ B éanJ’} v

M3 F5
+=218(y)2, 0,8, (16)

which encodes the tensor structure of the graviton propagator on the’bféuie.
structure is one of a massive 4D graviton or, equivalently, that of a massless 5D
graviton. It is given by

1 1 1
DHveB _ En/wtnvﬁ + Enﬂﬂnva _ §nuvnaﬂ 4 O(p), (17)

where we have neglected momentum-dependent termg,afsia 4D Minkowski
metric. Namely, the amplitude between two brane sources with conserved energy
momentum tensors,, andT}, is thus given in the Fourier Euclidean space by

j2ay
. . Fuoofs  1fpfe
h.,(p, y =0)T*(p) x p3pv
where the accented quantities are Fourier componentspaadhe Euclidean
norm of the 4-momentum. This means that, in the small distanger, regime,
if one wants to have the usual 4D expression for the force between two static point
masses on the brane, one needs to rescale the Newton co@sjanatMy2/8r,

(18)

7One has alse, 8. = 9, 9"h2.
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defined as usual from the action (4), by a facte4.3This rescaling is independent
of r. and thus persists in the limit of — oo, leading to the celebrated vDVZ
discontinuity (Van Dam and Veltman, 1970; Zakharov, 1970). This discontinuity,
if real in the full nonperturbative solution, would definitely be enough to rule outthe
model, since it leads, e.g., to a different prediction for light bending than the one of
General Relativity. However, as will be discussed below, the exact cosmological
solutions found in the model can indeed give a strong indication in favor of the
claim once made by Vainshtein (1972) that this discontinuity disappears in the
full (nonperturbative) exact solution. This has also been confirmed by more recent
works by Lue (2001) and Gruzinov (2001), and we will come back to this question
in Section 4.

Eventually, we would like to discuss the numerical values of some relevant
guantities. The only dimensionful parameter of the theory (exbiptwhich is
fixed by the small distance regime to its usual valueig) or equivalentlyrc.
Apart from cosmological bounds, that will be discussed below, the most stringent
bound orr. comes from looking at the first correction to Schwarzschild solution
(Gruzinov, 2001) in solar system observations (Talmaztgd. 1988). One finds
in this case. > 100 Mpc in agreement with bounds on large distance modification
of gravity (Goldhaber and Nieto, 1974; Groahal, 2000). This leads in turn to
an estimation foMs) < 100 MeV. This low quantum gravity scale leads however
to no conflict with experiments (Dvadit al,, 2001b), and the brane-induced gravity
models have indeed been proposed as providing a framework to realize very low-
scale quantum gravity theories (Dvatial, 2002). We refer the interested reader
to Dvali et al. (2001b, 2002) and Gia Dvali’s contribution for more details.

2. COSMOLOGICAL DYNAMICS
2.1. Friedmann’s Equations

We now briefly derive the Friedmann’s equations for the model considered
here recalling results obtained in Deffayet (2001). We start with an ansatz for the
metric of the form

ds? = —n(z, y) dz? 4 a%(z, y)p; dx dx) 4 dy?, (19)

where y;j is a maximally symmetric Euclidean three-dimensional metkie=(
—1,0,1 will parametrize the spatial curvature). The brane matter energy—
momentum tensor is taken accordingly with the following symmetry

TA 5 = 8(y)diag(—p, p, p, p, 0), (20)

8See e.g. Giannakis and Ren (2001) where the linearized Schwarzschild solution in the model Dvali
et al, 2000 has been worked out.
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wherep and p are the energy density and pressure of the matter cosmic fluid.
Considering here only a bulk with a vanishing cosmological constant, the Einstein’s
equations in the bulk can be solved by the first integral

2 aa 2
(a/a) - (nz)
where( is a constant of integration, a prime denotes a derivation with respect to
y, and a dot a derivation with respect#olt is also possible to obtain the explicit
form of the bulk metric, but this is not discussed here (see Deffayet (2001)).
The brane is then taken into account by using Israel-Darmois junction conditions
(Israel, 1966; Darmois, 1927), which relate the jump across the brane of the brane
extrinsic curvature to the delta functions sources on the right-hand side of Einstein’s
equations (5). They read here

—ka®+C =0, (21)

[21___» Mo [ M 22)
- 3M3 M3 n2 2 2
ap ®) M 1 & a,
Ml 3p+2 MZ [ & _an, &  n?
o 3M2 VA | 2 Cam | Ca <zt @
b ®) e U & apNp ap ay

where the subscrifiitfor a, b, n means that these functions are takey ia 0, and

[Q] = Q(0") — Q(07) denotes the jump of the functid acrossy = 0. We can
compare Eqgs. (22) and (23) with the similar equations obtained when discarding
the term (4) in the action [see e.g. Binetretal.(2000b)]. The latter are recovered

by lettingMp go to zero. This also shows explicitly that for a given induced metric
parametrized by, np,° andk, the intrinsic curvature term (4) acts as a “cosmic
fluid”° of densitypcury and pressur@qyr, given by

3M§ { a . }
Peurv = — — +k=3¢, (24)
ng lai &
YL |
= —P% b % kb 25
pcurv ng ag abnb ab 2 ( )

One notes that the energy density of this “fluid” is always negative whenever
k =0 ork = 1. Assuming the symmetty y <+ —y, the junction condition (22)
can be used to computg on the two sides of the brane. We have in this case
[@'] = 2a'(0*). By continuity wheny — 0, Eq. (21) yields the generalized (first)

9np can also be eliminated by a suitable change of time coordinate.

10The 4D Bianchi indentitiesv*G,,, = 0 ensure that the energy—-momentum of this “fluid” is
conserved.

11This choice matches the symmetry of the propagator computed in Bivali (2000) leading to
Eqg. (8).
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Friedmann’s equation:

2
efnz_ £y K _ Mo <H2+52)—L3, (26)
a8 & 2Mg &, 6M,
where the Hubble parameter is defined here by
ap
H=—, 27
e (27)

ande = +1isthe sign of§'] [see Eqg. (22)]. The two different possible choice: of
correspond to two different embeddings of the brane into the bulk space-time [see
Deffayet (2001) and e.g. Bowcoek al. (2002), Cvett'et al. (1993), and Gibbons
(1993)] . If we plug into the (0, 5) component of the Einstein’s equations the jump
conditions (22) and (23) we obtain, as when no brane intrinsic curvature (4) is
included, the conservation equation

. d
p+3(p+p)% =0. (28)

Equations (26) and (28), together with the brane matter equation of state, are
then sufficient to derive the cosmological evolution of the brane metric. We note
eventually that a nonzetbmeans that the Weyl's tensor of the bulk does not vanish
(Mukohyameet al., 2000; Shiromiztet al,, 2000). Since we are mainly interested
here in cases where the bulk is Minkowskian, we willGab zero in the rest of

this work.

2.2. Early Time Cosmology

The Friedmann’s equation (26) shows that usual 4D cosmology is recovered
whenever the term in the left-hand side of the equation is subdominant with respect
to the first term in the right-hand side, or namely when

k Mg
/H2+%>> 2%. (29)
PI

This is reexpressed in terms of the Hubble radiist, andr., by (neglecting the
spatial curvature)

H! «re. (30)

In this regime Eq. (26) reduces at leading order to the standard 4D Friedmann’s
equation

= . (31)
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This confirms the perturbative calculation done in Deafal. (2000) (namely that

the small distance—large curvature behavior of gravity is standard), with however
the following important difference: the Newton'’s constant entering into Eq. (31)
is Gn (and not 43Gy for, e.g., nonrelativistic matter, as could have been ex-
pected from the perturbative calculation and a Newtonian cosmology argument,
see Deffayeet al. (2001d) for more details), so that there is no appearance of the
vDVZ discontinuity in the exact cosmological solutions. We will come back to
this question later.

2.3. Late Time Cosmology

To investigate the late time cosmological evolution, let us rewrite the
Friedmann’s equation (26) as

2
k 0 1 1
H? 4+ = = [—— 4+ — +e—] . 32
P ( 3M§|+4r02+62rc> (32)
Equation (29), which gives the domain of validity of the standard-like early cos-
mology, can be rewritten as

P> p, (33)
wherep is defined by
3M3
= . 34
Pc 4rg (34)

Letus now assume that the 4D brane universe is endowed with a matter content such

that its energy density decreases with cosmological time and does not asymptote

any nonzero value (e.g. matter or radiatignStarting from an early phase where

Eq. (33) holds, one thenreaches aregime whgets much lower thap (this hap-

pens equivalently when the Hubble radids® gets much larger tham). One sees

then that there are two different asymptotic dynamics depending on the sign of
Let us first look at the case wheteis equal to—1. In this case, when the

matter energy density decreases, one is led to a regime where the Friedmann’s

equation (26) is given at leading order by

k 0>
H2 4+ — = — . 35
+a§ 36MgQ, (35)

This is the relation one would have obtained neglecting the term (4) in the action
of the theory, and is typical of brane cosmology in a bulk with no cosmological
constant (Bietruyet al,, 2000a,b).

12This will be true for any kind of matter having the same property in standard 4D General Relativity
since the conservation equation Eq. (28) is the usual one.
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On the other hand, whenis equal to 1, the left-hand side of Eq. (32) is
bounded from below by/k 2, and the universe evolves to a de Sitter phase, even if
the cosmological constant vanishes. The model considered here has indeed de Sitter
space-time as a vacuum solution, as can be understood recalling that the brane-
induced gravitational kinetic term (4) acts as abrane-localized source [Egs. (24) and
(25)] to the 5D Einstein’s equations, so that one has a nontrivial vacuum solution
even in the absence of “matter” sources. This is in strong analogy with models
of inflation sourced by higher derivative terms (Mijgt al, 1986; Starobinsky,
1980). The above discussion shows that in order for the model considered here to
be compatible with the known successes of cosmology, one needs the crossover
radiusr . to be large enough. A conservative bound is thahould be of the order
of, or larger than, today’s Hubble radius. This is also compatible with other bounds
quoted at the end of Section 1.2. With such a choice of parameters, one does not
spoil successes of the hot Big Bang such as nucleosynthesis, and the evolution of
the universe is standard, with deviation (if any) only occurring at very recent times.

We would like to now briefly review two interesting solutions, each pertaining
to one of the two branches of solutions mentioned above, and discuss some of their
possible virtues.

3. THE LATE TIME ACCELERATING SOLUTION

As mentioned above, the late time dynamics ofd¢he 1 branch of solutions
asymptotes a de Sitter phase when the energy density of the universe is decreasing
to a sufficiently small value. This is the basis of the proposition made in Deffayet
(2001) and Deffayeet al. (2001a) to use this branch to explain the observed late
time acceleration of the universe (Perimutteal.,, 1999; Ries®t al., 1998, 2001)
without the need for a nonvanishing cosmological constant. This idea was further
explored in Deffayetet al. (2002), fitting for the cosmological parameters using
SNla and CMB data. In the following subsections we first briefly compare the
outcome of this proposal to standard cosmology with various forms of dark energy
(Section (3.1)), and then present the results obtained in Deféagt(2002) for
the parameters estimations (Section (3.2)).

3.1. Comparison With Standard Cosmology

Using the conservation equation (28), Eq. (32) gives the Hubble parameter
H as a function of redshift by

2
H%(2) = HZ { Q1+ 2)* + ( Qr, + \/Qrc + Z Qo1+ Z)3(1+w,1)>

(36)



Cosmology of Brane-Induced Gravity Models 2221

where we have assumed thats given by the sum of the energy densitigsof
different components (labeled Iay) with constant equation of state parameters
w,. TheQ'’s for matter and curvature are defined in the usual way by

0
Q=—-—"+, 37
SMPIZ HOZag(]ﬂLWa) ( )
—k

Q = : (38)

Hie
(39)

whereag,_ is given by
1

Q= . 40
e 4rgH02 ( )

The normalization condition for th@s,

2
Q + <\/Q_rc+ /szrc+29a> =1, (41)

differs from the usual relatio®y + Y, Q. = 1. In the following we will then

only consider a universe with a zero cosmological constant, and usual (dark, bary-
onic, etc.) matter content. It is then apparent from Eq. (36) fhatacts in a

way similar to a cosmological constant in standard Friedmann’s equations. To be
more accurate, the above described cosmology is exactly reproduced by standard
cosmology with a dark energy component witlz-dependent equation of state
parametewf(ﬁ(z), which for a universe containing only nonrelativistic matter, is
given by [see Deffayett al. (2001a)]

wi'(2) = ! 1 (42)

4Q
(\/QM(1+2)3 + 4) (\/Q (l+z)3 + \/Q (l+z)3 )

At large redshiftwg tends toward-1, reflecting the fact that the dominant term
in Eq. (36), after matter and curvature terms, redshifts as £f/2 at largez. At
low z, howeverw&" decreases toward agf, Qu)-dependent asymptotic value.
For a flat universe, the latter is simply giventby-1/(1 + Q). Figure 1 shows
the different possibilities for the expansion as a functiofgf and<;..

3.2. Fits to SNla and CMB Data

In order to compare the outcome of the cosmology (36) and the SNla obser-
vations, one uses the standard expression for the luminosity distdng¢sisice

13For example, foew = 0.3 andk = 0, w$" at low z tends toward-0.77.
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Q..
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0.6 no big bang -
0.5 _ -

-
—
0.4} _ -
~

0.3t7

closed
0.1r open

0.2 0.4 0.6 0.8 1 M

Fig. 1. Different possibilities for the expansion as a functiosxf and<2;.. The solid

line denotes a flat universk & 0), with Q2 obtained through Eq (41). The universes
above the solid line are closek £ 1), the universes below are opdn=£ —1). The
universes above the dashed line avoid the big bang singularity by bouncing in the past.

this is only dependent of the form of the metric on the brane, which is the usual
FLRW form) as a function of the redshiftgiven by

S (V19%Id
d = Hy Y1+ z)%, (43)
with dc(2) defined by
_ [fy. 9y
de(2) = /O HOW, (44)
H(2) is given by Eq. (36), an& reads
sinr (k=1)
S(r) = { sinhr (k=-1) . (45)
r (k=0)

Figure 2 shows the luminosity distances for various values of the parameters of
standard cosmology compared to the outcome of the cosmology (36).

A fit to the supernovae data set from the SCP (Perimutter, 1999), with the
luminosity distance calculated using Eg. (36), yields the contours reproduced in
Fig. 3. For a flat universe, the results of thé minimization gives (one sigma
levels)

Qw = 018703 or @, =0172% (46)
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Fig. 2. Luminosity distance as a function of redshift for ordinary cosmology with
Qpr =0.7,Qu = 0.3,k =0 (dashed line)2y =0,Q2m = 1,k =0 (solid line),
and dark energy witkex = 0.7, wx = —0.6, 2w = 0.3,k = 0 (dotted-dashed line)

and in our model (dotted line) wittyy = 0.3 and a flat universe (for which one gets
from Eq. (41)2, = 0.12 andr¢ = 1.4Hg ).

with x2 = 57.96, for 52 (54 SNe-2 parameters) degrees of freedgnThis leads
to an estimate; in terms of the Hubble radius given by

re=1.21730%H, . (47)

The degeneracy appearing in tisa(, 2;.) plane can be lifted by comparison
with CMB data. For that purpose a modified version of CMBFAST (Seljak and
Zaldarriaga, 1996) was used in Deffageal.(2002) replacing the first Friedmann’s
equation by Eg. (32). The equations for the growth of cosmological perturbations
were kept the same as in usual cosmology (except for the background evolution).
This is justified for the small-scale perturbations and for processes happening early
enough inthe history of the universe, as is discussed in more detail in Dedtajet
(2002). On the other hand, one can expect deviations from the standard picture at
large scale (and late time) where (and when) the effect of the extra dimension began
to be felt. This concerns scales of order of today’s Hubble radius and processes
happening in the late history of the universe. A more careful exploration of the
approximation made in Deffayet al. (2002) has still to be carried out Deffayet
etal.(in preparation). This could potentially lead to a way to discriminate between
standard cosmology and the model considered here by, e.g., data on the large-scale
structures.

14These numerical results are in agreement with the fit done in Avelino and Martins (2002); we however
disagree with the conclusions of that work [see Deffatet. (2002) and Deffayett al. (2001b) for
a discussion of this paper].
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Fig. 3. Confidence regions (68.3%, 90%, and 99%) fa2m( Qr.) in
gravitational leakage scenario, assuming no prior knowledgeaoid M.

In Deffayetet al. (2002), a six-dimensional parameter spate; (2, <.,
wd, wp, N, A), Wherewy = Qeamh?, wp = Qph?, andA andn are the amplitude and
slope of the primordial spectrum of perturbations was explored using a Markov
chain method. The details of the procedure can be found in the original reference
(Deffayetet al., 2002). Figure 4 shows the results of the analysis irtte-<;,
plane. The shaded region was drawn to contain approximately 95% of the models
in the chain; the line marks the location of spatially flat models. The constraint
on €, is coming mainly from the position of the acoustic peaks and so there is a
natural degeneracy in the,—;_ plane which is apparent in the plot.

As expected the CMB data prefers spatially flat models. Thus it is natural to
further restrict the analysis to flat universes, which was done by considering only
samples in the chain with negligible curvature. The probability distributioffgr
under this assumption is shown in Fig. 5.

The fits done in Deffayeet al. (2002) show that the model of accelerated
universe proposed in Deffayet (2001) and Deffagetl. (2001a) is in current
agreement with SNla and CMB data. The degeneracies in parameters estimations
using one data set (e.g. CMB) can be patrtially lifted using the other (e.g. SNIa)
as in standard cosmology. The supernovae data prefer a slightly lower value of
Qum (2w = 0.187590) than the CMB for a flat universe; however, a concordance
model with €, 2, wg, wp, N, A) = (0, 01225, 01, 0.02, 096, 057), which has
Qm = 0.3 (andy? &~ 140 for the full data set (135 data points)), provides a good
fit to both sets, all the more as systematic errors have not been included in the
parameter estimations. For this model the crossover distance between 4D and 5D
gravity is given byrc ~ 1.4H, ™.
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Fig. 4. Allowed region in theQy —, plane (shaded). The line shows the location of spatially flat
models. The shaded region was drawn to contain approximately 95% of the models in our chain.

We also underline here that the model under consideration is very predictive
in the sense that future observations have the potential to rule it out. In contrast to
quintessence models, this model has the same number of free parameters as the
usual LCDM model. With the advent of new precision cosmological measurements
such as new SNla observations, CMB measurements, ongoing galaxy surveys such
as Sloan and 2dF, weak lensing surveys, etc, it should be possible to test the model
very accurately. Another possible way to discriminate between this model and
standard cosmology relies on a better understanding of cosmological perturbations,
as has been mentioned above.

4. THE SELF-FLATTENING SOLUTION AND vDVZ DISCONTINUITY

We now turn to discuss some aspects of¢he —1 branch of solution of
Eq. (26). We first start by describing some properties of one of these solutions given
in Deffayetet al.(2001c) and further discussed in Deffageal.(2001d) in relation
with the vDVZ discontinuity. In this particular solution, the brane is endowed with
a negative cosmological constatt in addition to “ordinary” matter. All what is
needed to get the cosmology is then to replady p — |[A| andp by p+ |A] in
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Fig. 5. Marginal distributions fo€2y under the assumption that the universe is spatially flat. The solid
line shows the results from CMB and the dashed line from SN.

Eq. (26) and (28), where andp now represent the energy density and pressure of
“ordinary” matter respectively. Let us then consider matter with equation of state
p = wp, with a constantv, andw > —1, and a spatially flat universe (wikh= 0).
Starting from initial conditions where the total energy density of the univagse

given by

Pot = p — |Al, (48)
is positive and such that > |A| together withp > pc, one knows from the
previous analysis that the early evolution of the universe follows the standard 4D
usual Friedmann’s equations. The universe’s energy depgityhen decreases
until it becomes lower than the threshald while still being positive. This signals
the entry into the late time asymptotic phase where the Friedmann’s Eq. (26) is
given at leading order by the pure 5D brane cosmology Eq. (35). One can then
show thatpy,; asymptotes to zero in infinite cosmological time, this being due to
the particular form of Eq. (35). This is in striking contrast with ordinary cosmology
with a negative cosmological constant where the total energy density goes to zero
and the universe bounces back in a finite time. The full 5D metric (19) has then
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the asymptotic form
ds? = —(1+ |Ayl/2ME)? dz? + dx dX' +dy*. (49)

This metric in the bulk is of course simply a rewriting of 5D Minkowski flat met-
ric,*> which in this particular case is easily recognized as being a two-dimensional
Rindler space-time a 3D Euclidean space. It has the particularity to violate 4D
Lorentz symmetry fromy = constant slice to the other. This however can only
give rise to observable effect through graviton exchange, since only the graviton
propagates in the bulk and sees this violation, and can be made arbitrarily small by
conveniently choosing the parameters [see Deffayal. (2001c) where various
aspects of this violation are discussed]. On the other hand, the metric on the brane is
4D Minkowski, while the asymptotic form of the brane energy—momentum tensor
is then given by

T# 5 = 8(y)diag(0,—|Al, —|Al, —|Al, O). (50)

Such an evolution toward 4D Minkowski space-time on the brane would also
hold true for more general forms of matter like, e.g., a scalar field as has been
shown in Deffayegt al. (2001c). Let us note, however, that if one wants to ap-
ply such a mechanism to our universe, one should indeed impose very strong
constraints on the parameters of the model. The most stringent constraints come
from requiring that the recent history of the universe does not differ dramati-
cally from the standard successful cosmological history, which requiresH; 1
and|A| < 10~3eV. This is no better than the usual constraint on the cosmo-
logical constant in ordinary gravity and does not give a solution to the cosmo-
logical constant problem; however, the above described mechanism provides an
interesting way to “prepare” 4D Minkowski out of a very large class of initial
conditions.

Another aspect of the = —1 branch of solution of Eq. (26) is related to the
vDVZ discontinuity. As we have mentioned before, all those solutions, in which
the brane is endowed with matter which energy density decreases to zero as the
universe expands, interpolate between two regimes: an early regime where the
cosmology is simply given at leading order by ordinary 4D cosmology (31), and
a late time regime where the cosmology is given at leading order by pure 5D
brane cosmology (35). In other words those solutions are interpolating between
exact solutions of two theories: Theory |, defined by the sum of actions (3) and
(4), is just ordinary 4D gravity, and Theory I, defined by the sum of the actions
(2) and (3) (and the Gibbons—Hawking term), is a 5D brane-world theory. This
interpolation can be obtained by tuning continuously in the cosmological solutions
given here of the full theory [Theory Il defined by the sum of the three terms (2),

15As is Eq. (19) for the solutions discussed in this paper, since we have taken the bulk cosmological
constant and the bulk Weyl's tensor to vanish.



2228 Deffayet

(3), and (4)] the parameter between 0 (Theory 1l) and-co (Theory ). This
means in particular that the solutions considered here have a continuous limit
toward those of Theory I, in contrast from what would have been expected from
the perturbative analysis recalled in Section 1.2. From this analysis, indeed, one
would have expected that one would not recover solutions of Theory | from the
limit rc — oo, simply because the tensorial structure of the graviton propagator
of Theory lll is the one of 5D gravity, and thus the limjf — co should have
exhibited the vDVZ discontinuity.

This supports the argument made by Vainshtein (1972) that the vDVZ discon-
tinuity is namely an artifact of the perturbation theory over a flat space-time. We
will not recall here the details of this argument. We refer to the original reference,
as well as to Deffayest al. (2001d) for more details. Let us only mention that this
argument was made in the framework of a Pauli-Fierz theory for massive gravi-
tons, and relied on a careful examination of a Schwarzschild-type solution in this
theory. Namely it was shown in Vainshtein (1972) that there was a well-defined
perturbative expansion around the ordinary 4D Schwarzschild which was not sin-
gular in the limit of the mass of gravitan going to zero, whereas the perturbative
expansion over a flat space-time (which exhibits the discontinuity) was shown to
be singular in the same limit. However, this reasoning suffers from several draw-
backs. First the theory of massive graviton considered in Vainshtein (1972) is not
unambiguously defined. Second it was not verified that it was possible to match
the right asymptotic behavior at large radial distattce from the well-behaved
(asm goes to zero) perturbative expansion. The latter was shown to be valid only
for a restricted range of radial distances given by

rm < < ryom=5, (51)

wherer, is the (usual) Schwarzschild radius, ands the graviton mass.

On the other hand, the Theory Il considered here is unambiguously defined,
and the propagator of the graviton has the same tensorial structure as the one of
a massive (or 5D) gravity (with, playing the ole of m™1). Although it has not
been shown exactly that the Schwarzschild solution is recovered at small radii [see
however Gruzinov (2001) and Lue (2001)], the cosmological solution mentioned
above provides an explicit example of interpolation between a small-time 4D
tensorial structure and a large-time 5D tensorial structure. The early time tensorial
structure has been discussed above. The late time tensorial structure on the other
hand is the one of Theory Ill, obviously the one of 5D gravity. This can be seen more
explicitly, e.g., looking at the solution described in the first part of this subsection.
The late time asymptotic metric (49) can indeed be obtained as an expansion over
the flat 5D Minkowski from Eq. (16), where the fact that fipcomponents of the
metric have noy dependence is directly related to the fact that the source on the

16This was further underlined in Boulware and Deser (1972).
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right hand side of Eq. (16) vanishes for the asymptotic energy—momentum tensor
(50)1" This would not be the case for a 4D tensorial structure.
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